US009311002B1

a2z United States Patent (10) Patent No.: US 9,311,002 B1
Scott et al. (45) Date of Patent: Apr. 12,2016
(54) SYSTEMS, METHODS, AND COMPUTER 7,284,244 Bl 10/2007 Sankaranarayan et al.
READABLE MEDIA FOR COMPRESSING 7,340,522 Bl 372008 Basu et al.
7,406,484 Bl 7/2008 Srinivasan et al.
DATA AT A VIRTUALLY PROVISIONED 7,463,648 Bl 12/2008 Eppstein et al.
STORAGE ENTITY 7,480,912 B2 1/2009 Arnold et al.
Continued
(75) Inventors: Derek Scott, Morrisville, NC (US); Karl (Continued)
M. Owen, Chapel Hill, NC (US); OTHER PUBLICATIONS
Chung-Huy Chen, Cary, NC (US) Lacroix, R., EMC Introduces New EMC CLARIiiON CX4 Series
.) . . with Next Generation Architecture, Aug. 5, 2008 (Retrieved Dec. 18,
(73) Assignee: EMC Corporation, Hopkinton, MA 2014 from http://www.emc.com/about/news/press/2008/20080805-
(Us) 01.htm), EMC, 5 pages.™
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35 . . .
U.S.C. 154(b) by 727 days. Primary Examiner — Gary W Cygiel . .
(74) Attorney, Agent, or Firm — Jenkins, Wilson, Taylor &
(21) Appl. No.: 12/826,385 Hunt, P.A.
(22) Filed: Jun. 29, 2010 (57) ABSTRACT
Systems, methods, and computer readable media for access-
(51) Int. Cl. ing and compressing data at a virtually provisioned storage
GOGF 3/06 (2006.01) entity are disclosed. According to one aspect, a method
(52) US.CL includes receiving, at a data storage entity, an input/output
CPC .o GO6F 3/0608 (2013.01); GOGF 3/0665 (I/0) command to perform an operation on data associated
(2013.01); GO6F 3/0689 (2013.01) with a logical block address (LBA) in a virtually provisioned
(58) Field of Classification Search device in the data storage entity, wherein the data storage
CPC ... GO6F 3/0608; GO6F 3/0665; GO6L 3/0689; entity has established an expanded private LBA space for the
GO6F 17/30153 virtually provisioned device in the data storage entity to
USPC RTINS 710/68; 709/247, 711/173, 210/68 include both a Compressed LBA space portion for storing
See application file for complete search history. compressed data and an associated uncompressed LBA space
. portion for storing uncompressed data. The method further
(56) References Cited includes determining if'a data chunk containing the data in the

U.S. PATENT DOCUMENTS

5,140,592 A 8/1992 Idleman et al.

5,459,850 A 10/1995 Clay et al.

5,604,902 A 2/1997 Burkes et al.

6,192,432 Bl 2/2001 Slivka et al.

6,310,563 Bl 10/2001 Har et al.

6,360,300 B1* 3/2002 Corcoranetal. 711/139
6,442,659 Bl 8/2002 Blumenau

6,681,242 Bl 1/2004 Kumar et al.

6,880,062 Bl 4/2005 Ibrahim et al.

302" REGEIVE /0 COMMAND FROM HOST _|

504\‘ DETERMINE TARGET OF /O COMMAND ‘
I

TARGET IN
UNCOMPRESSED
REGION

526

1
READ DATA
DIRECTLY FROM
CHUNK INTO
SYSTEM MEMORY

WRITE DATA
DIRECTLY TO
CHUNK

522
524
\

PROVIDE DATA
TO HOST
(B)

! T

BACKGROUND THREAD 540
ULTIMATELY COMPRESSES DATA
DEALLOCATE CHUNK IN 542
UNCOMPRESSED REGION

L

uncompressed LBA space is available using the L.BA in the
1/O command to access the data chunk. If the data chunk in the
uncompressed LBA space is available, the method includes
performing the operation on the data chunk. If the data chunk
in the uncompressed LBA space is not available, the method
includes accessing the data chunk in the compressed LBA
space using both the LBA and a predefined offset value and
performing the operation on the data chunk.

24 Claims, 6 Drawing Sheets

COMPRESSED
CHUNK
530

51\4)
DECOMPRESS
CHUNK IN
SYSTEM MEMORY

WRITE NEW
DATATO
UNCOMPRESSED
REGION

READ
COMPRESSED
CHUNK

532

DECOMPRESS
CHUNK IN
SYSTEM MEMORY

534
S—

PROVIDE DATA

TO HOST

DEALLOCATE
CCMPRESSED
CHUNK IN
COMPRESSED
REGION

DECOMPRESSED
DATA WITH THE
170 DATA

'WRITE MERGED
DATATO THE
UNCOMPRESSED
REGION

&)

US 9,311,002 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,577,692 Bl 8/2009 Corbett et al.
7,702,873 B2 4/2010 Griess et al.
7,814,128 B2 10/2010 Silvers et al.
7,849,180 B2 12/2010 Sawyer et al.
8,140,821 B1* 3/2012 Raizenetal. 711/202
8,191,125 B2 5/2012 Dellow et al.
8,359,444 B2 1/2013 Arakawa
8,392,382 B2 3/2013 Marwah et al.
8,407,445 Bl 3/2013 Pathak et al.
8,443,163 Bl 5/2013 Bailey et al.
8,443,369 Bl 5/2013 Bailey et al.
8,473,678 Bl 6/2013 Rajasekaran et al.
8,745,327 Bl 6/2014 Throop et al.
8,886,909 Bl 11/2014 De Forest et al.
8,924,681 Bl 12/2014 Throop et al.

2001/0049779 Al
2003/0056073 Al
2003/0131165 Al
2004/0039891 Al
2004/0054850 Al
2004/0098537 Al
2004/0153606 Al
2004/0181476 Al
2004/0243699 Al
2005/0193231 Al
2005/0273556 Al
2006/0010290 Al
2006/0085471 Al
2006/0112247 Al
2006/0143424 Al
2007/0005625 Al
2007/0043842 Al
2007/0143563 Al
2007/0150690 Al*
2007/0185934 Al
2008/0066069 Al
2008/0082593 Al
2009/0034107 Al
2009/0064159 Al
2009/0077327 Al
2009/0089516 Al
2009/0106281 Al
2009/0248763 Al
2009/0276588 Al
2009/0292870 Al
2009/0307424 Al
2010/0153641 Al
2010/0262802 Al
2010/0299495 Al
2011/0145609 Al
2011/0191536 Al

12/2001 Shimada et al.
3/2003 Zeiger
7/2003 Asano et al.
2/2004 Leung et al.
3/2004 Fisk
5/2004 Serizawa
8/2004 Schott
9/2004 Smith et al.
12/2004 Koclanes et al.
9/2005 Scheuren
12/2005 Gellai et al.
1/2006 Sasamoto
4/2006 Rajan et al.
5/2006 Ramany et al.
6/2006 Matsuzaki et al.
1/2007 Lekatsas et al.
2/2007 Chouanard et al.
6/2007 Pudipeddi et al.
6/2007 Chenetal.ccoovevnn. 711/170
8/2007 Cannon et al.
3/2008 Verbowski et al.
4/2008 Komarov et al.
2/2009 Posamentier
3/2009 LaFrese et al.
3/2009 Hara
4/2009 Pelts et al.
4/2009 Marwah et al.
10/2009 Rajan et al.
11/2009 Murase
11/2009 Sambe et al.
12/2009 Galloway et al.
6/2010 Jagadish et al.
10/2010 Goebel et al.
11/2010 Frank
6/2011 Berard et al.
8/2011 Mizuno et al.

OTHER PUBLICATIONS

Official Action for U.S. Appl. No. 12/164,959 (Sep. 12, 2011).
Commonly Assigned, Co-pending U.S. Appl. No. 13/168,329 for
“Methods, Systems, and Computer Readable Medium for Control-
ling Prioritization of Tiering and Spin Down Features in a Data
Storage System” (Unpublished, filed Jun. 24, 2011).

Final Official Action for U.S. Appl. No. 12/100,514 (May 25,2011).
Non-Final Official Action for U.S. Appl. No. 12/100,514 (Nov. 16,
2010).

Commonly-assigned, Co-pending U.S. Appl. No. 12/826,434 for
“Managing Multi-Tiered Storage Pool Provisioning,” (Unpublished,
filed Jun. 29, 2010).

Commonly Assigned, Co-pending U.S. Appl. No. 12/824,816 for
“Methods, Systems, and Computer Readable Medium for-Tier-
Based Data Storage Resource Allocation and Data Relocation in a
Data Storage Array” (Unpublished, filed Jun. 28, 2010).

Commonly Assigned, Co-pending U.S. Appl. No. 12/751,685 for
“Systems, Methods, and Computer Readable Media for an Adapta-
tive Block Allocation Mechanism” (Unpublished, filed Mar. 31,
2010).

Commonly Assigned, Co-pending U.S. Appl. No. 12/164,959 for
“Methods, Systems, and Computer Readable Medium for Dynamic,
Policy-Based Allocation of System Resources” (Unpublished, filed
Jun. 30, 2008).

Commonly Assigned, Co-pending U.S. Appl. No. 12/100,514 for
“Methods, Systems, and Computer Readable Medium for Allocating
Physical Storage in a Storage Array” (Unpublished, filed Apr. 10,
2008).

Final Official Action for U.S. Appl. No. 12/751,685 (Jun. 27, 2012).
Applicant-Initiated Interview Summary for U.S. Appl. No.
12/100,514 (Jun. 5, 2012).

Non-Final Official Action for U.S. Appl. No. 12/751,665 (May 8,
2012).

Non-Final Official Action for U.S. Appl. No. 12/751,685 (Feb. 14,
2012).

Non-Final Official Action for U.S. Appl. No. 12/100,514 (Jan. 31,
2012).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/751,665,
(Now. 16, 2012).

Non-Final Office Action for U.S. Appl. No. 12/824,816 (Sep. 14,
2012).

Interview Summary for U.S. Appl. No. 12/751,665 (Aug. 20, 2012).
Final Official Action for U.S. Appl. No. 12/100,514 (Aug. 10, 2012).
Non-Final Official Action for U.S. Appl. No. 12/164,959 (Jul. 24,
2012).

Non-Final Official Action for U.S. Appl. No. 12/826,434 (Jun. 13,
2012).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/826,434
(Mar. 7, 2013).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/824,816
(Jan. 17, 2013).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/164,959
(Jan. 11, 2013).

Applicant-Initiated Interview Summary for U.S. Appl. No.
12/822,173 (Oct. 18, 2013).

Non-Final Office Action for U.S. Appl. No. 12/100,514 (Oct. 15,
2013).

Non-Final Office Action for U.S. Appl. No. 13/168,329 (Oct. 7,
2013).

Final Office Action for U.S. Appl. No. 12/822,173 (Jun. 12, 2013).
Non-Final Office Action for U.S. Appl. No. 12/822,173 (Mar. 26,
2012).

McGaughey, Katryn, “New Levels of EMC Midrange Storage Effi-
ciency and Simplicity Accelerate Journey to the Private Cloud,” EMC
Press Release, pp. 1-4, http://www.emc.com/about/news/press/2010/
20100511-02.htm, (May 11, 2010).

Sakac, Chad, “EMC Unified Storage—Next Generation Efficiency
Details”, Virtual Geek blog, pp. 1-15, http://virtualgeek typepad.
com/virtual _geek/2010/05/emc-unified-storage-next-generation-
efficiency-details.html, (May 11, 2010).

Non-Final Office Action for U.S. Appl. No. 12/822,173 (Jan. 29,
2015).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/751,685
(Aug. 25, 2014).

Final Office Action for U.S. Appl. No. 12/822,173 (Aug. 5, 2014).
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/100,514
(Jul. 2, 2014).

Non-Final Office Action for U.S. Appl. No. 12/751,685 (Apr. 10,
2014).

Final Office Action for U.S. Appl. No. 12/100,514 (Feb. 6, 2014).
Non-Final Office Action for U.S. Appl. No. 12/822,173 (Jan. 30,
2014).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/168,329
(Jan. 27, 2014).

* cited by examiner

US 9,311,002 B1

Sheet 1 of 6

Apr. 12,2016

U.S. Patent

T

a3ass3ddiN0O3d

T

(

OTT

[y

901

Y

NNT IHILNT SSId4dN0O3a ¢
NOISS3ddNOD 440 NdNL °

NOISSTHdINOD3A

[DI

NOISSTHdNO0OTd @

a3ass3addINGD I

T

a3SS3HdNOONN

i: // 001

N7 FHILNT SSTHdNOD ¢
NOISSTddINOD NO NdNnL *

NOISS3ddNOD 1VILINI

34T0AD341T SNOILYH3IdO NOISSHddNOD

U.S. Patent

Apr. 12,2016

Sheet 2 of 6

US 9,311,002 B1

204

200

CONTROLLER

HOST

DATA
STORAGE
DEVICES

208

1GB
SLICES

1GB SLICE
ALLOCATIONS

MAPPED
LUNS

214

1GB SLICES

8KB MAPPING
ALLOCATION UNITS

MLU1 LOGICAL
BLOCK ADDRESS
SPACE

FIG. 2

2GB

US 9,311,002 B1

Sheet 3 of 6

Apr. 12,2016

U.S. Patent

¢ ‘DIH
VIHV V1VA GISSTHANOD VNV V1vd d3ISSTHINOONN
AN N
i Y)
B | b Ei MNAHD ANODTS
R €9 | YO 1 €0 7772 WO | oL 3Lim yaLdy
p0¢ - _ ——
B ool g | g | BN
\ i mmmmmm | .VO i MUO } NO | —\O N3
20¢ B | | | |
T T 00
T T . | 1avis
Oom T i } f f f i
2/ Xy
XYy
X<_>_m -
| | | | 3OV dS SSIHAav
a3T114 0¥3Z = i ~ 1yl ep!zo ! 10| 00718 WOIOOT
R N
aASSIUAINOD = & 91z i M
A n 11 s oval
Q3ISSTUAINOONN = [/ x/“\mJ

US 9,311,002 B1

Sheet 4 of 6

Apr. 12,2016

U.S. Patent

(434

0cy

v DI

(STDIANTA FDOVHOLS HLIM STOVAYALNID WHY ¥IMOT

A i
V1va |

. v.iva NS .

VLN - | O O O o

| ogy— 1 SL03rE0 N4 | HIOVNYI
o= Jj00d
INILSAS YIOVNYIN B 7 oI

ONlddviN IS [OO0 |-
S103rgo 100d
A w@\ﬁh s J_

- OO0 - NEMN
¥OLVNIQH00D O/l - 1 SLodrdo s | SIN ~1
, A e

97¥ lﬂ@ Q er HIDVNYIN
Y SLO3rg0 NN N T 80%
o S -
HOLYNIQ¥009D INIONT —~ HIOVNYIA
NOISSTHANOD [~ | NOIsSTHdNO0 [~ =) 938039 NOISSTHINOD [~ 70
8T 90¥ oy ANIHOYIN | | 53ra0
pop— | HYLS ey 00
(O/1 LSOH SIAIFDTY) W HIddn
N 70t

U.S. Patent Apr. 12,2016 Sheet 5 of 6 US 9,311,002 B1

500

02— RECEIVE I/O0 COMMAND FROM HOST

¥
| DETERMINE TARGET OF /O COMMAND

504

?

522 526
\ Y \ Y
READ DATA WRITE DATA
DIRECTLY FROM DIRECTLY TO
CHUNK INTO CHUNK
SYSTEM MEMORY

524
\ Y

PROVIDE DATA
TO HOST

| !

BACKGROUND THREAD -
ULTIMATELY COMPRESSES DATA

540

!

!

DEALLOCATE CHUNKIIN -3
UNCOMPRESSED REGION

FIG. 5A

42

FIG. 5B

U.S. Patent Apr. 12,2016 Sheet 6 of 6 US 9,311,002 B1
510
READ
READ OR WRITE
WRITE
?
512
\ Y
READ
COMPRESSED
CHUNK
528 | 530
514) /
\ | WRITE NEW READ |
DECOMPRESS DATA TO COMPRESSED |
CHUNK IN UNCOMPRESSED CHUNK |
SYSTEM MEMORY REGION
! 532
516 /
\ | DECOMPRESS
PROVIDE DATA CHUNK IN
TO HOST SYSTEM MEMORY
538 534
\ 1 1 Y ;
DEALLOCATE MERGE
COMPRESSED DECOMPRESSED
CHUNK IN DATA WITH THE
COMPRESSED /O DATA
REGION
536
| 1 ;
WRITE MERGED
9 DATA TO THE
UNCOMPRESSED
REGION

|

US 9,311,002 B1

1

SYSTEMS, METHODS, AND COMPUTER
READABLE MEDIA FOR COMPRESSING
DATA AT A VIRTUALLY PROVISIONED
STORAGE ENTITY

TECHNICAL FIELD

The subject matter described herein relates to methods and
systems for managing data in data storage devices. More
particularly, the subject matter described herein relates to
systems, methods, and computer readable media for com-
pressing data at a virtually provisioned storage entity.

BACKGROUND

Data storage array systems are presently being utilized by
corporate and business entities as a means for storing signifi-
cant amounts of business related data. As the number of
companies that utilize data storage array systems continue to
increase, so does the amount of storage space these data
storage array systems must be equipped to provide. Similarly,
the data storage array systems may also employ different
techniques that optimizes their current data storage capabili-
ties. For example, a data storage array may employ various
compression techniques to reduce the size of data stored in the
storage arrays. However, although several companies use
data storage arrays to store data, these companies also fre-
quently access (i.e., read or write) the compressed data on a
regular basis. Notably, the compressed data must be decom-
pressed in some manner before it can be read or written.
However, the frequent compression and decompression of
data can create problems pertaining to the permanent loss of
data. For example, should the system experience some type of
failure while a piece of compressed data is partially overwrit-
ten, it is possible that some data may become unrecoverable.

Accordingly, in light of these disadvantages associated
with conventional methods for compression of data stored
within a data storage device, there exists a need for systems,
methods, and computer-readable media for compressing data
at a virtually provisioned storage entity to a data storage
entity.

SUMMARY

According to one aspect, the subject matter described
herein includes receiving, at a data storage entity, an input/
output (I/O) command to perform an operation on data asso-
ciated with a logical block address (LBA) in a virtually pro-
visioned device in the data storage entity, wherein the data
storage entity has established an expanded private LBA space
for the virtually provisioned device in the data storage entity
to include both a compressed LBA space portion for storing
compressed data and an associated uncompressed LBA space
portion for storing uncompressed data. The method further
includes determining if a data chunk containing the data in the
uncompressed LBA space is available using the L.BA in the
1/0 command to access the data chunk. If the data chunk in the
uncompressed LBA space is available, the method includes
performing the operation on the data chunk. If the data chunk
in the uncompressed LBA space is not available, the method
includes accessing the data chunk in the compressed LBA
space using both the LBA and a predefined offset value and
performing the operation on the data chunk.

The subject matter described herein for the access and
compression of data in a data storage entity may be imple-
mented in hardware, software, firmware, or any combination
thereof. As such, the terms “function” or “module” as used

15

30

35

40

45

55

2

herein refer to hardware, software, and/or firmware for imple-
menting the feature being described. In one exemplary imple-
mentation, the subject matter described herein may be imple-
mented using a computer readable medium having stored
thereon computer executable instructions that when executed
by the processor of a computer control the computer to per-
form steps. Exemplary computer readable media suitable for
implementing the subject matter described herein include
non-transitory computer-readable media, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-
tion, a computer readable medium that implements the sub-
jectmatter described herein may be located on a single device
or computing platform or may be distributed across multiple
devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the subject matter described
herein will now be explained with reference to the accompa-
nying drawings, wherein like reference numerals represent
like parts, of which:

FIG. 11is a block diagram illustrating a compression opera-
tions lifecycle according to an embodiment of the subject
matter described herein;

FIG. 2 is block diagram illustrating an exemplary system
for compressing data incoming to a virtually provisioned
storage entity according to an embodiment of the subject
matter described herein;

FIG. 3 illustrates an exemplary logical unit that has been
divided into compression domains (e.g., chunks) according to
an embodiment of the subject matter described herein;

FIG. 4 is a block diagram illustrating an exemplary con-
troller for compressing data received at a virtually provi-
sioned storage entity according to another embodiment of the
subject matter described herein; and

FIGS. 5A and 5B are a flow chart illustrating an exemplary
process for compressing data received at a virtually provi-
sioned storage entity according to an embodiment of the
subject matter described herein.

DETAILED DESCRIPTION

In accordance with the subject matter disclosed herein,
systems, methods, and computer readable media are provided
for compressing data at a virtually provisioned storage entity.
When writing data to a compressed logical unit, or modifying
data within the compressed logical unit, data is not written to
the logical unit in compressed form, but is instead written to
the logical unit in uncompressed form, and subsequently
compressed. Rather than a file-based compression domain,
block-based compression domains are used. Rather than
defining the compression domain to be the size of the entire
logical unit, a single logical unit may include multiple com-
pression domains.

Reference will now be made in detail to exemplary
embodiments of the present subject matter, examples of
which are illustrated in the accompanying drawings. Wher-
ever possible, the same reference numbers will be used
throughout the drawings to refer to the same or like parts.

FIG. 11is a block diagram illustrating a compression opera-
tions lifecycle according to an embodiment of the subject
matter described herein. In FIG. 1, a volume of data storage,
such as a logical unit (LU) or virtual storage device (VPD),
may begin in an uncompressed state 100. This means that any
data initially contained within the volume is not compressed.

US 9,311,002 B1

3

Upon initiation of an initial compression 102, compression
for the volume is turned on, meaning that all incoming data is
at least potentially subject to compression. If the volume
already contains uncompressed data, the data on that volume
is compressed. The result of initial compression 102 is the
creation of a volume in a compressed state 104. This volume
may be subject to recompression 106 in response to the detec-
tion of certain triggers, such as the detection of a threshold
condition. The volume in compressed state 104 may be
decompressed and recompressed multiple times. In one
embodiment, data storage systems may implement a com-
pression technique where recompression step 106 may be
deferred, perhaps indefinitely.

Upon initiation of a decompression 108, such as if the
volume type is changed to uncompressed type or if the vol-
ume is otherwise converted to an uncompressed volume,
compression is turned off for incoming data, and any data
currently existing within the volume is decompressed. As a
result of decompression 108, the volume is decompressed
110, e.g., the volume returns to an uncompressed state.

When data that exists on the compressed logical unit is
modified, the system determines whether the data to be modi-
fied exists on the logical unit as compressed or uncompressed
data. If the data to be modified exists on the logical unit as
compressed data, the system may uncompress the data,
modify the uncompressed data, and write the modified data
back to the logical unit. Namely, instead of writing the data
back to the logical unit in compressed form, the system of the
present subject matter may, in one embodiment, write the data
back to the logical unit in uncompressed form.

In one embodiment, if an entire chunk of compressed data
is overwritten, however, the compressed data is not decom-
pressed. Instead, the new data may be written to the logical
unit, either overwriting compressed data currently stored
within the chunk with new, uncompressed data, or alterna-
tively, writing the uncompressed data to one or more new
mapping units, mapping the new mapping units into the
mapped logical unit (MLU) logical address space, and deal-
locating the mapping units that were formerly mapped to that
same MLU logical address space so that the mapping units
may be used to store something else. This avoids any need to
perform a decompression and thus saves time and resources.
In one embodiment, a mapping unit may represent 8 KB of
data.

FIG. 2 is block diagram illustrating an exemplary system
for compressing data incoming to a data storage entity
according to an embodiment of the subject matter described
herein. Data storage system 200 includes a controller 202 for
communicating with one or more hosts 204 to read and write
datato one or more data storage devices 206, whose collective
data storage capacity is represented as data storage area 208.
In the embodiment illustrated in FIG. 2, data storage system
200 has N number of data storage devices, labeled D1 through
DN. Data storage devices 206 may include hard disk drives,
floppy disk drives, tape drives, FLASH drives, or any other
form of persistent storage. In one embodiment, data storage
devices 206 may be organized into redundant arrays of inex-
pensive disks (RAID) groups.

In one embodiment, the total data storage area 208 may be
divided into slices for allocation to one or more logical units,
or virtual storage devices. In the embodiment illustrated in
FIG. 2, data storage area 208 is divided into M number of one
gigabyte (1 GB) slices. In one embodiment, the pool of data
storage devices 206 are first divided into RAID groups, which
are themselves divided into several logical units each. The 1
GB slices may be provisioned from those logical units.

40

45

4

In one embodiment, data storage system 200 supports
sparsely allocated logical units, also called thinly allocated
logical units (TLUs), in which slices are allocated to the
logical unit as needed, in contrast to fully allocated logical
units, in which all of the slices that the logical unit will ever
need based on its projected maximum size are allocated to the
logical unit at the time its creation. In the embodiment illus-
trated in FIG. 2, data storage system 200 supports mapped
logical units, or MLUs, in which the slices that are allocated
to the TLU are not necessarily contiguous within the collec-
tive data storage area. For example, mapped MLU1 210 has
been allocated two slices (i.e., slice 4 and slice 1) from data
storage area 208. MLLU2 212 has been allocated three slices
(i.e., slice 2, slice 9, and slice 6) from data storage area 208.

In one embodiment, each slice may be further subdivided
into portions that are allocated and mapped to the MLU as
needed. These portions of a slice are herein referred to as
“mapping allocation units”. In the embodiment illustrated in
FIG. 2, mapping allocation units are 8 KB in size, but any
other size may be used without departing from the scope of
the present subject matter. In this scenario, slices are said to be
provisioned to an MLU and thereby made available for use.
Likewise, the 8 KB portions of the slice are said to be allo-
cated to specific ranges of logical block addresses within the
MLU as data space is being used. In the embodiment illus-
trated in FIG. 2, the data storage area represented by slices 4
and 1 are represented as container 214, which is a data struc-
ture that allows the ML U to be presented as a data storage area
having a logical block address space larger than the physical
space that is actually present. Container 214 maps the 8 KB
mapping allocation units into the logical block address space
of MLLU1 210, which is represented as element 216 in FIG. 2.
Note that the 8K mapping allocation units need not be
mapped into contiguous logical block address spaces, and
that the 8K mapping allocation units may be allocated from
any 1 GB slice. For example, in the embodiment illustrated in
FIG. 2, 8 KB mapping allocation units B, C, and D occupy
contiguous portions of the logical block address space of
MLUT1 210, but do not occupy contiguous portions of slice 4
or slice 1. Moreover, mapping allocation units B and Care
allocated from slice 4 while mapping allocation unit D is
allocated from slice 1.

In one embodiment, logical block address space 216 is
divided into compression domains, called “chunks”. As
stated above, the size of a chunk should be chosen as a
compromise between compression efficiency (which
increases with increasing chunk size) and system perfor-
mance (which decreases with increasing chunk size). In one
embodiment, illustrated in FIG. 3, a chunk size of 64 KB is
selected.

In one embodiment, the first half of the LU’s logical block
address space may be used to hold uncompressed data (i.e.,
uncompressed region) while the second half will hold com-
pressed data (i.e., compressed region). For example, the
transformation from uncompressed-region LBA to com-
pressed-region LBA can be achieved by applying a bitwise
OR operation to the most significant bit (MSB) of the LU’s
uncompressed region LBA to create a new compressed-re-
gion LBA that is associated with the original uncompressed
region.

When servicing I/O to a chunk, a compression coordinator,
which is discussed in detail below with respect to F1G. 4, may
first check for the existence of uncompressed data. If the
uncompressed-region for the chunk is allocated, data may be
read/written directly to the uncompressed-region. Con-
versely, if the entire uncompressed-region is unallocated, the
compression coordinator may check for data in the com-

US 9,311,002 B1

5

pressed-region. Also, if there is a valid allocation in the com-
pressed-region, the data must be decompressed and returned
or modified as appropriate. If neither region contains a valid
allocation, then the entire chunk is unallocated.

Compressing a chunk does not modify the data within the
chunk. When data that has been previously compressed is
overwritten, the chunk is decompressed and the new data is
written to the uncompressed-region. Therefore, the data in the
uncompressed-region is always at least as correct as the data
in the compressed-region.

FIG. 3 illustrates an exemplary use of existing data storage
system constructs for compressing data at a virtually provi-
sioned storage entity according to an embodiment of the
subject matter described herein. FIG. 3 illustrates an exem-
plary logical block address space of an LU that has been
divided into compression domains, called chunks, according
to an embodiment of the subject matter described herein. In
FIG. 3, the storage space of MLLU1 210 is shown as presented
to a host, i.e., as logical block address space 216, which has
logical block addresses ranging from LBA 0 through LBAV
(and beyond). Logical block address space 216 is divided into
multiple 64 KB chunks, labeled C1 through C4 (and beyond).
Logical block addresses S, T, U, and V represent address
boundaries between the 64 KB blocks. Each of chunks C1-C4
is treated as an independent compression domain.

In the embodiment illustrated in FIG. 3, logical block
address space 216 has been defined as having a maximum size
of B,,, logical blocks, where B, is a function of the
maximum size of a sparsely allocated MLU. However, the
logical address space used by data storage system 200 has a
maximum number of logical blocks A,,,;, where
(Ayri>Basix)- In the embodiment illustrated in FIG. 3, the
maximum logical block address space supported by the logi-
cal address space is divided into two parts, each part being
(A, ,4%/'2) logical block addresses in size. The first half of the
logical block address space, i.e., from logical block address O
to logical block address (A, ,+/2), is used for storing uncom-
pressed data. This region is called the uncompressed region
(UR). All data stored in an LU is initially placed in the
uncompressed region. The second half of the logical block
address space, i.e., from logical block address A, /2 to
logical block address A, ,, is used for storing compressed
data. This region is called the compressed region (CR). The
logical space for a TLU is expanded in the mapping system
(MS), which is discussed in detail below with respect to FIG.
4, while keeping the TLU the same size. This operation con-
sumes no real storage but creates an expanded private (i.e., not
available to the host) logical block address space. Specifi-
cally, since a TLU only needs enough [.BA space for a maxi-
mum size TLU, a CR and UR for each chunk may be created
in the largest possible TLU. In one embodiment, the maxi-
mum size of a TLU may be 14 TB to 16 TB.

In one embodiment, each chunk associated with a TLU or
MLU is mapped to both a portion of the uncompressed region
and a corresponding portion of the compressed region. In the
embodiment illustrated in FIG. 3, chunks C1-C4 are mapped
to like-named portions of the uncompressed region and are
also mapped to corresponding portions of the compressed
region. For example, uncompressed data stored within chunk
C1 is mapped to the mapping system logical block addresses
starting from logical block address 0. Ifthe data stored within
chunk C1 is compressed, the compressed data is physically
stored in some other chunk within LBA 216, e.g., chunk C1".
From the viewpoint of the data storage system, however,
chunk C1' is algorithmically mapped to a logical address
space that corresponds to the logical address space of C1, but
within the portion of the address space that is used for storing

10

15

20

25

30

35

40

45

50

55

60

65

6

compressed data. In the embodiment illustrated in FIG. 3, for
example, chunk C1 resides a logical block address 0, and
chunk C1' resides a logical block address 0+A,,,,/2. Like-
wise, chunk C2 starts a logical block address J and chunk C2'
starts at logical block address S+A,,,,/2. In this manner, the
data storage system maps uncompressed data to logical block
address X and maps the corresponding compressed data to
logical block address X+A,,, /2.

Although additional logical block address space is pro-
vided, no real storage space is consumed for the additional
logical block addresses. The logical space is created by keep-
ing the TLU the same size while extending the logical address
space of the TLU to its maximum possible size. Namely, this
operation does not consume any real storage as the created
logical block address space is virtual. Since the TLU only
requires enough logical block address space for a maximum
sized TLU, the logical unit may be expanded to at least twice
its logical size in order to create a compression region (CR)
and an uncompressed region (UR) for each chunk in the
largest possible TLU.

FIG. 3 further illustrates three snapshots of the contents of
a logical block address space that is utilized according to an
embodiment of the subject matter described herein. Snapshot
300 shows the contents of the logical block address space
before compression. In this snapshot, each of chunks C1
through C4 contains uncompressed data. The corresponding
chunks C1' through C4' do not yet contain any data. Snapshot
302 shows the contents of the mapping system after compres-
sion. The data that formerly occupied chunk C1 has been
compressed and is now stored in chunk C1'. The same is true
for each of chunks C2, C3, and C4 since their data has been
compressed and is respectively stored in chunks C2', C3', and
C4'. Once the data has been compressed and successfully
stored into the compressed data area, the original uncom-
pressed data may be deleted from the uncompressed data
area, (i.e., chunks C1-C4 are cleared). Because the results of
the compression do not overwrite the uncompressed data, and
vice versa, a system failure during the compression or decom-
pression step will not cause a loss of data. This feature pro-
vides greater stability and allows for data recovery in the
event of a failure.

Snapshot 304 shows the contents of the mapping system
after data has been written to the second chunk, C2. A write to
alogical block address within C2 triggers data storage system
200 to determine whether that chunk is currently compressed
ornot. Inthe exampleillustrated in FIG. 3, chunk C2 has been
compressed and the compressed data is currently stored in
chunk C2'. The data within chunk C2' is then decompressed
and stored into chunk C2, after which the data write can
proceed. Once the write is finished, however, the system does
not necessarily recompress the data within chunk C2 and
store it into chunk C2'. Instead, this recompression will occur
only when and if needed.

FIG. 4 is ablock diagram illustrating a controller for imple-
menting an exemplary system for compressing data incoming
to a data storage entity according to another embodiment of
the subject matter described herein. In the embodiment illus-
trated in FIG. 4, controller 202 from FIG. 2 is shown in more
detail. Controller 202 includes an interface 400 for receiving
1/O requests from a host and for controlling the storage
devices within the system. Because interface 400 is oftenin a
shape that resembles a physical C-shaped clamp, interface
400 is colloquially referred to as “the C-clamp” having an
“upper arm” that handles communication to and from the
hosts and a “lower arm” that handles communication to and
from the hard disk drives or other storage devices.

US 9,311,002 B1

7

In the embodiment illustrated in FIG. 4, controller 202
includes a compression manager 402, which is a collection of
interface routines to assist other components in interacting
with data that is stored in various data constructs, called
“objects”, which are used by controller 202. Controller 202
also includes a compression engine (CE) object 404, which is
anobject representing the compression engine 406. CE object
404 is used to store global data relevant to compression, such
as the global pause/resume and compression/decompression/
recompression state.

In one embodiment, compression engine 406 is configured
to determine when to compress, decompress, or recompress
LU chunks and makes requests to a compression coordinator
428 to perform the actual compression or decompression
process. Namely, compression coordinator 428 is responsible
for reading data, compressing and decompressing data, writ-
ing data to compressed data and decompressed data, and
deallocating redundant uncompressed data and compressed
data. In one embodiment, compression engine 406 operates in
response to the write operations of compression coordinator
428 (e.g., since the writing of uncompressed data instead of
compressed data causes storage demands to increase). Com-
pression engine 406 acts in response to that increase, which it
measures by requesting information from the mapping sys-
tem through a LU (e.g., a MLU).

In one embodiment, when the compression process is
executed for a given TLU, compression engine 406 begins
issuing commands to compression coordinator 428 to instruct
it to begin reading the TLU’s data in chunks (e.g., 64 KB sized
data chunks), compress the data for each chunk, and write the
compressed data to the compressed-region corresponding to
that chunk of the TLU. After the compressed data has been
written, compression coordinator 428 may deallocate the
original chunk of uncompressed data.

Controller 202 includes a mapped logical unit (MLU) man-
ager 408 for managing ML U objects 410, a mapping system
(MS) manager 412 for managing MS objects 414, a pool
manager 416 for managing pool objects 418 and RAID based
logical unit objects (also known as “Flare” logical units, or
FLUs) objects 420. An object manager 422 and state machine
manager 424 are used to track and maintain the various
objects (MLU, MS, pool, and FL.U objects, for example) used
by controller 202. A slice manager 426 is responsible for
allocation of'slices to logical units. In one embodiment, MLU
manager 408 handles the control path and provides support
for the logic in the I/O path by providing access to control path
data.

Compression coordinator 428 processes host I/O requests
that are received by the upper arm of C-clamp 400 and passed
to compression coordinator 428, if compression is turned on,
or to I/O coordinator 430, if compression is turned off. To
service host I/O requests, compression coordinator 428,
which is a component in the I/O path, will locate the appro-
priate chunk(s), decompress the data for them if necessary,
and for write I/O requests, write the correct output. In one
embodiment, writes to a compressed chunk results in the
entire chunk being read, decompressed and rewritten, with
the written data placed appropriately among the decom-
pressed data. When the process is complete, the compression
coordinator 428 deallocates the old compressed data. This
avoids placing a compression step in the 1/O path, but results
in the LU becoming less compressed over time. In response,
compression engine 406 may be configured to periodically
recompress the LU.

If compression is turned on, I/O coordinator 430 is config-
ured to receive and execute sub-I/O commands issued by
compression coordinator 428. As used herein, a sub-I/O com-

10

15

20

25

30

35

40

45

50

55

60

65

8

mand is functionally the same as a regular I/O command
exceptthat is provided by the compression coordinator 428 as
part of the actions the compression coordinator 428 takes to
service a host /O request. In one embodiment. I/O coordina-
tor 430 is also configured to send write data to the lower arm
of C-clamp 400 for eventual storage within data storage
devices 206. /O coordinator passes data to a mapping system
432. Mapping system 432 provides meta-data to the lower
arm of C-clamp 400.

Inthe embodiment illustrated in FI1G. 4, compression coor-
dinator 428 takes incoming I/O from both the C-clamp 400
upper arm and from compression engine 406, establishes the
internal data layout, and manages all sub-I/O necessary to
complete a given incoming 1/O request. In one embodiment,
compression coordinator 428 will arrange data in a special-
ized layout to ensure the availability ofalogical block address
range for both compressed and uncompressed data for any
given chunk. In one embodiment, compression engine 406 is
a throttled, pause-able background service that uses a com-
pression library to compress or decompress the data. In one
embodiment, at initialization, compression engine 406 may
start a number of work threads for performing the background
compression, recompression, or decompression operations.
When all work threads are active, subsequent compression
operations will be queued within compression engine 406.

In one embodiment, compression engine 406 will interact
with compression coordinator 428 to compress or decom-
press a chunk. Compression coordinator 428 will complete
the request and provide notification of the status, such as:
successful, out of space, out of other resources like chunk
buffers, or /O error. If chunk compression fails, compression
engine 406 may simply proceed to the next chunk. If chunk
decompression fails, compression engine 406 may stop
decompression and log an error.

In one embodiment, compression engine 406 may monitor
compression engine object 404, which may indicate that a
TLU is subject to an initial compression, a recompression, a
decompression, etc. In one embodiment, initial compres-
sion applies to every chunk in the TLU. During a recompres-
sion, compression engine 406 may request a list of uncom-
pressed extents from compression coordinator 428. In one
embodiment, both initial compression and recompression
will proceed in a forward fashion, updating a persistent status
marker after a predetermined number of chunks have been
processed. If a chunk behind the progress marker is decom-
pressed to service a host write, then that chunk will remain
decompressed until the next recompression pass.

During a compression, compression engine 406 may track
the amount of space it has saved. In one embodiment, if
compression engine 406 observes that it has recovered an
entire slice worth of data, compression engine 406 may signal
to MLU manager 408 that a slice evacuation is likely to be
successful. An evacuated slice may be released and returned
to the pool of slices for allocation to another logical unit if
needed. Alternatively, compression engine 406 may notify
MLU manager 408 any time the persistent progress marker is
updated, and MLU manager 408 may determine whether
evacuation is likely to succeed. Compression engine 406 may
also signal for evacuation at the end of every compression
pass in case the fractional savings are enough to free another
slice. Mapping system 432 may coalesce evacuation requests
and free as many slices as it discovers possible, which may be
zero. Upon completing a compression pass, compression
engine 406 may set the “last consumed capacity” in the cor-
responding MLU object 410.

In one embodiment, when work threads are idle, they may
periodically scan for MLU objects 410 which have compres-

US 9,311,002 B1

9

sion activated to see if any MLUs have increased utilization
since the time ofthe ML U’s last compression operation. If so,
the thread may begin a recompression operation. For the
purposes of checking if recompression is needed, compres-
sion engine 406 may use an interface of MS manager 412 to
obtain the actual capacity consumed by mapping system 432.
This provides an accurate picture of storage used that is not
subject to the timing of the completion of slice evacuation
requests.

In one embodiment, a user of data storage system 200 may
set a value for compression and/or decompression rate, in
order to control how fast the compression or decompression
process operates or how many resources the process con-
sumes.

Direct mapped logical units, especially those that are
mapped to RAID arrays, such as Flare LUG (FLUs) cannot be
compressed directly, because there is no way to release stor-
age from the middle of a FLLU and return it to that logical
unit’s RAID group. One approach is to overcome this limita-
tion is to migrate the FLU to a thinly provisioned LU (TLU)
and then compress it.

FIGS. 5A and 5B are a flow chart depicting an exemplary
method 500 for accessing and compressing data incoming to
a data storage entity according to an embodiment of the
subject matter described herein. At block 502, a data storage
system receives an [/O command. Example [/O commands
include, but are not limited to, I/O read, in which data is read
from the data storage entity, and 1/O write, in which data is
written to the data storage entity. For example, referring to
FIG. 2, controller 202 may receive an I/O command from host
204 that requests a read or write operation to be performed at
a particular address in the logical block address space. If an
1/0 command is received, the process flow moves to block
504.

Atblock 504, the target of the /O command is determined.
In one embodiment, compression coordinator 428 is config-
ured to locate appropriate target chunks and logical blocks
based on the received /O commands. For example, for I/O
commands that are directed to a logical block, the location of
the logical block is identified by compression coordinator
428. Each logical block is within a chunk, and thus the iden-
tity of the target chunk is determined. For example, host 204
may issue an [/O write to logical block address X (LBA X) of
MLU1 210. As shown in FIG. 2, LBA X is located within
mapping allocation unit C, and as shown in FIG. 3, LBA X is
located within chunk C2. For the purpose of illustration, it is
presumed for this example that the logical unit is fully com-
pressed, i.e., it is in the state shown in element 302 of FIG. 3.
Atblock 506, it is determined whether the target resides in the
uncompressed region of the expanded logical block address
space. For example, compression coordinator 428 first deter-
mines if there is a valid mapping between the LBA specified
in the received /O command and corresponding logical block
in the uncompressed region. In one embodiment, a mapping is
between the LBA and some storage extent in the pool,
describing where data (if any) can be found in physical terms.
For example, a typical mapping may either be none (meaning
no data for that LBA) or LUN 0 LBA 0, length 128 blocks
mapping to pool LUN 9001, LBA 1024, length 128 blocks,
where pool LUN 9001 is one of the LUNG created internally
by the pool manager on the drives that were assigned to the
storage pool.

If a valid mapping does not exist, then compression coor-
dinator 428 determines ifthere is a valid mapping between the
LBA plus the offset (e.g., A,,,+/2) and the corresponding
logical block in the compressed region. Thus, if the compres-
sion coordinator 428 determines that the target chunk is in the

10

15

20

25

30

35

40

45

50

55

60

65

10

compressed region, then method 500 proceeds to block 510.
Alternatively, if it is determined that the target resides in the
uncompressed region, then method 500 continues to block
518.

At block 510, it is determined whether the I/O command is
a read or a write. If the I/O command is a write, method 500
moves to block 520, where it is determined whether the write
operation will write data to just a portion of the target chunk
or completely overwrite the entire chunk. If the I/O command
requests aread operation, then method 500 continues to block
512.

At block 512, the target chunk in the compressed region is
read. For example, compression coordinator 428 reads the
chunk from a storage disk by locating the proper target chunk
in the LBA space using the LBA address (provided by the [/O
command) along with the A, ,, /2 offset. In one embodiment,
the compressed data that is read is placed in a first bufter (e.g.,
RAM) located in system memory.

At block 514, the target chunk is decompressed. In one
embodiment, compression coordinator 428 decompresses the
compressed target chunk data located in the aforementioned
buffer using a compression algorithm and places the resulting
decompressed data in a second buffer in system memory.

At block 516, the requested data is provided to the host. In
one embodiment, compression coordinator 428 obtains the
portion of the data from the decompressed data using the
LBA. For example, compression coordinator 428 places the
portion of data requested by the host in a third buffer, and the
data is transmitted from the buffer to host 204. In one embodi-
ment, the third buffer is initially established by controller 202
upon receiving the original I/O command from the host.

Returning back to decision block 510, method 500 contin-
ues to block 520 where a determination is made as to whether
the write operation will either write data to a portion of the
target chunk or completely overwrite the entire chunk. If the
system determines that the target chunk is to be completely
overwritten, then method 500 proceeds to step 528 where the
new write data from the host is written to the LBA (e.g., LBA
X) in the uncompressed region that corresponds to the LBA of
the compressed data (e.g., LBA X+A,,,;/2) as an uncom-
pressed chunk. Method 500 then continues to block 538.

At block 538, the compressed chunk in the compressed
region is deallocated. In one embodiment, compression coor-
dinator 428 determines that the compressed chunk in the
compressed region of the LBA is now redundant and deallo-
cates the chunk.

Returning back to decision block 520, after determining
that the entire compressed chunk will not be overwritten,
method 500 continues to block 530 where the compressed
chunk is read. For example, compression coordinator 428
reads the chunk from a disk by locating the proper target
chunk in the LBA space using the L BA address (provided by
the /O command) along with the A, ,./2 offset. In one
embodiment, the compressed data that is read is placed in a
first buffer (e.g., RAM) located in system memory.

At block 532, the target chunk is decompressed. In one
embodiment, compression coordinator 428 decompresses the
compressed target chunk data located in the aforementioned
buffer using a compression algorithm and places the resulting
decompressed data in a second buffer in system memory.

Atblock 534, the decompressed data is merged with the [/O
data. In one embodiment, compression coordinator 428
merges the data to be written (i.e., specified in the /O mes-
sage) with the decompressed data in the system memory by
either overwriting a section of old data specified by the host or
inserting new data at a particular LBA indicated by the host.

US 9,311,002 B1

11

At block 536, the merged data is written to the uncom-
pressed region. In one embodiment, compression coordinator
428 writes the merged data in the system memory to the LBA
(e.g., LBA X) in uncompressed region that corresponds to the
LBA of the location of the compressed data (e.g., LBA
X+A,,,+/2) as an uncompressed chunk. As one example, the
execution of blocks 532-536 of method 500 may be illustrated
by the decompression of chunk C2' in stage 302 and the
writing of chunk C2 in stage 304 of FIG. 3.

After the merged data is written to the uncompressed
region, method 500 continues to block 538 where compres-
sion coordinator 428 determines that the corresponding com-
pressed chunk in the compressed region of the LBA is now
redundant and deallocates the compressed chunk.

Returning back to decision block 506, after determining
that the target chunk is located in the uncompressed region,
method 500 continues to block 518 where a determination is
made as to whether the I/O command is a read or a write. If the
I/O command is a write, method 500 moves to block 526. If
the /O command requests a write operation, then method 500
continues to block 526 where the data is written by compres-
sion coordinator 428 directly to the target chunk in the
uncompressed region. If the /O command requests a read
operation, then method 500 proceeds to block 522 and data is
read directly from the target chunk into system memory. In
one embodiment, the data to be read is accessed and placed in
abuffer by compression coordinator 428. In one embodiment,
this buffer is initially established in system memory upon
receiving the original [/O command from host 204.

At block 524, the data is provided to the host. In one
embodiment, the aforementioned data in the buffer is pre-
pared for transmission and is sent to the requesting host 204.

In block 540, the data in the target chunk is compressed. In
one embodiment, compression engine 406 may utilize a back-
ground thread or program to recompress data located in the
uncompressed region. Depending on how compression
engine 406 is configured, the compression of a chunk in the
uncompressed region may occur on a periodic basis, after
every I/O command, or after a trigger condition occurs (e.g.,
a predefined threshold condition occurs).

In block 542, the chunk of uncompressed data is deallo-
cated. In one embodiment, compression engine 406 deallo-
cates the old uncompressed data associated with the chunk in
the uncompressed region. This process allows the data stor-
age system to free redundant data after the most current
version of data is compressed and stored.

It will be understood that various details of the subject
matter described herein may be changed without departing
from the scope of the subject matter described herein. Fur-
thermore, the foregoing description is for the purpose of
illustration only, and not for the purpose of limitation.

What is claimed is:

1. A method for accessing and compressing data in a data
storage entity, the method comprising:

receiving, at a data storage entity, an input/output (I/O)

command to perform an operation on data associated
with a logical block address (LBA) in a virtually provi-
sioned device in the data storage entity, wherein the data
storage entity has established an expanded private LBA
space for the virtually provisioned device in the data
storage entity to include both a compressed LBA space
portion for storing compressed data and an associated
uncompressed LBA space portion for storing uncom-
pressed data;

determining if a data chunk containing the data in the

uncompressed LLBA space is available using the LBA in
the I/0O command to access the data chunk;

5

20

25

30

40

45

12

if the data chunk in the uncompressed LBA space is avail-
able, performing the operation on the data chunk; and

if the data chunk in the uncompressed LBA space is not
available, accessing the data chunk in the compressed
LBA space using both the L.BA and a predefined offset
value and performing the operation on the data chunk.

2. The method of claim 1 wherein accessing the data chunk
in the compressed LBA space includes determining whether
the I/0O command is either a read operation or a write opera-
tion.

3. The method of claim 2 wherein, if the I/O command is
determined to be a read operation, reading the compressed
chunk to memory of the data storage entity, decompressing
the chunk in memory, and returning the requested portion of
the decompressed data to the host.

4. The method of claim 2 wherein, if the I/O command is
determined to be a write operation, determining whether the
entire chunk is to be overwritten.

5. The method of claim 4 wherein, if the entire chunk is to
be overwritten, writing data contained in the /O command to
the uncompressed L. BA associated with the compressed LBA
corresponding to the entire chunk, and deallocating the entire
chunk in the compressed LBA space.

6. The method of claim 4 wherein, if the entire chunk is not
to be overwritten, reading the compressed chunk to memory
of the data storage entity, decompressing the chunk in the
memory, merging the decompressed data in the chunk with
write data contained in the I/O command, writing the merged
data to the uncompressed LBA associated with the com-
pressed LBA corresponding to the entire chunk, and deallo-
cating the entire chunk in the compressed LBA space.

7. The method of claim 1 wherein the predefined offset
value is equal to half of the maximum size of the expanded
LBA space.

8. The method of claim 1 wherein determining if the data
chunk in the uncompressed LBA space is available includes
determining if a valid mapping associated with the LBA in the
uncompressed LBA space exists.

9. A system for accessing and compressing data in a data
storage entity, the system comprising:

a compression coordinator, implemented by a processor,
for receiving an input/output (I/O) command to perform
an operation on data associated with a logical block
address (LBA) in a virtually provisioned device in a data
storage entity, wherein the data storage entity has estab-
lished an expanded private LBA space for the virtually
provisioned device in the data storage entity to include
both a compressed LBA space portion for storing com-
pressed data and an associated uncompressed LBA
space portion for storing uncompressed data; and

a compression engine for executing background operations
that send commands to the compression coordinator that
instruct the compression coordinator to compress or
decompress chunks of data in the expanded private LBA
space, wherein the compression coordinator is further
configured to determine if a data chunk containing the
data in the uncompressed LBA space is available using
the LBA in the I/O command to access the data chunk, to
perform the operation on the data chunk if the data chunk
in the uncompressed LBA space is available, and if the
data chunk in the uncompressed LBA space is not avail-
able, to access the data chunk in the compressed LBA
space using both the LBA and a predefined offset value,
decompress that data, and to perform the [/O command
on or with the decompressed data for the data chunk.

10. The system of claim 9 wherein the background opera-
tions executed by the compression engine have the effect of

US 9,311,002 B1

13

compressing, recompressing, or decompressing at leasta por-
tion of the virtually provisioned device.

11. The system of claim 10 wherein the predefined offset
value is equal to half of the maximum size of the expanded
LBA space.

12. The system of claim 9 wherein the compression engine
is further configured to determine when the background com-
pression, recompression, or decompression operations are to
be executed.

13. The system of claim 9 wherein the compression coor-
dinator is further configured to determine whether the 1/O
command is either a read operation or a write operation.

14. The system of claim 13 wherein the compression coor-
dinator is further configured to, if the /O command is deter-
mined to be a read operation, read the compressed chunk to
memory of the data storage entity and decompress the chunk
in the memory.

15. The system of claim 13 wherein the compression coor-
dinator is further configured to, if the /O command is deter-
mined to be a write operation, determine whether the entire
chunk is to be overwritten.

16. The system of claim 15 wherein the compression coor-
dinator is further configured to, if the entire chunk is to be
overwritten, write data contained in the I/O command to the
uncompressed LBA associated with the compressed LBA
corresponding to the entire chunk, and deallocate the entire
chunk in the compressed LBA space.

17. The system of claim 15 wherein the compression coor-
dinator is further configured to, if the entire chunk is not to be
overwritten, read the compressed chunk to memory of the
data storage entity, decompress the chunk in the memory,
merge the decompressed data in the chunk with write data
contained in the I/O command, write the merged data to the
uncompressed LBA associated with the compressed LBA
corresponding to the entire chunk, and deallocate the entire
chunk in the compressed LBA space.

18. The system of claim 9 wherein the compression coor-
dinator is further configured to determine if a valid mapping
associated with the LBA in the uncompressed LBA space
exists.

19. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

10

15

20

25

30

35

40

14

at a data storage entity:

receiving an input/output (I/O) command to perform an
operation on data associated with a logical block
address (LBA) in a virtually provisioned device in the
data storage entity, wherein the data storage entity has
established an expanded private LBA space for the
virtually provisioned device in the data storage entity
to include both a compressed LBA space portion for
storing compressed data and an associated uncom-
pressed LBA space portion for storing uncompressed
data;

determining if a data chunk containing the data in the

uncompressed L.BA space is available using the LBA in
the I/0O command to access the data chunk;

if the data chunk in the uncompressed LBA space is avail-

able, performing the operation on the data chunk; and
if the data chunk in the uncompressed LBA space is not
available, accessing the data chunk in the compressed
LBA space using both the L.BA and a predefined offset
value and performing the operation on the data chunk.

20. The computer readable medium of claim 19 wherein
accessing the data chunk in the compressed LBA space
includes determining whether the I/O command is either a
read operation or a write operation.

21. The computer readable medium of claim 20 wherein, if
the I/0O command is determined to be a read operation, read-
ing the compressed chunk to memory of the data storage
entity, decompressing the chunk in the memory, and returning
the requested portion of the decompressed data to the host.

22. The computer readable medium of claim 20 wherein, if
the /O command is determined to be a write operation, deter-
mining whether the entire chunk is to be overwritten.

23. The computer readable medium of claim 22 wherein, if
the entire chunk is to be overwritten, writing data contained in
the 1/0 command to the uncompressed LBA associated with
the compressed LBA corresponding to the entire chunk, and
deallocating the entire chunk in the compressed LBA space.

24. The computer readable medium of claim 22 wherein, if
the entire chunk is not to be overwritten, reading the com-
pressed chunk to memory of the data storage entity, decom-
pressing the chunk in the memory, merging the decompressed
data in the chunk with write data contained in the I/O com-
mand, writing the merged data to the uncompressed LBA
associated with the compressed LBA corresponding to the
entire chunk, and deallocating the entire chunk in the com-
pressed LBA space.

